

Introduction to Reverse
Engineering

Alan Padilla, Ricardo Alanis, Stephen Ballenger,
Luke Castro, Jake Rawlins

Reverse Engineering (of Software)

● What is it?
○ Taking stuff apart and learning how it works. Specifically, we are taking apart programs

● What is it for?
○ Binary exploitation (the cool topic)
○ Malware analysis
○ Other stuff

● Binary exploitation
○ OG hacking. Way harder and cooler than web hacking.

■ But (mostly) kidding

● A word on “hacking”...
○ Learn the technology
○ Sprinkle in some ingenuity

Not Another Boring Text Slide

This stuff is cool. Not gonna make you take my word for it though. Demo time.

Ok, this one is another boring text slide

Why did that happen? How did it happen?

Like any sort of hacking, learn how something works, sprinkle in some ingenuity,
bend some rules, and all the root shells will be yours.

Hopefully you will be able to do this by the end of this presentation, and you will be
a real life Mr. Robot.

...But first you have to learn the background of how stuff works, before you can
exploit it.

Basics

What is a Program?

● A program is a collection of instructions that performs a specific task when
executed by a computer.
○ At the lowest level, programs are a series of binary bits, 0 and 1.

C++ / Java Program Assembly Code
(x86)

Machine Code
(Binary)

Compilation Translation

Numbering Systems

● Base 10 (Decimal) - The representation of numbers we are most familiar with.
○ Each digit (0-9) is a product of a power of 10, for example:

■ 6197 = 7 x 100 + 9 x 101 + 1 x 102 + 6 x 103 = 7 x 1 + 90 x 10 + 1 x 100 + 6 x 1000 = 6197

● Base 2 (Binary) - The representation of numbers processed by computers.
○ Each digit (0 and 1) is a product of a power of 2, for example:

■ 1011 = 1 x 20 + 1 x 21 + 0 x 22 + 1 x 23 = 1 x 1 + 1 x 2 + 0 x 4 + 1 x 8 = 11

● Base 16 (Hexadecimal) - The representation of numbers used by programmers
to represent long binary numbers concisely.

○ Contains 0 - 9 and A - F as digits where each is a product of a power of 16. For example:
■ 0xC5 = 5 x 160 + 12 x 161 = 5 + 192 = 197

○ Note: Many times hexadecimal numbers are preceded by “0x” to denote their base.

Bits, Bytes, and Words

A bit is a single binary digit, 0 or 1.

A byte is a group of eight bits.

● For example, 00110101 = 0x35

A word is a group of 2 bytes, or 16 bits.

● For example, 0110100110101101 = 0x69AD

Memory Layout

● Code - instructions fetched by the
CPU to execute the program’s tasks

● Heap - used for dynamic memory
during execution, creates (allocate)
new values and eliminate (free)
values that the program no longer
needs

● Stack - used for local variables and
parameters for functions, and to help
control program flow.
Last-In-First-Out

Low
Memory
Address

High
Memory
Address

Little and Big Endianness

- Little Endian - “little end” is where the least significant byte of a word or larger
is stored in the lowest address. Used for variables in memory.

- Big Endian - “big end” is how we read it sort of left to right. Typically used for
Network Traffic

Big Endian : 0x12345678

Little Endian: 0x78563412

X86 Assembly

ASM

- Lowest-level programming language

Intel vs AT&T

Intel

● <instruction> <destination>, <operand(s)>
● Little Endian
● No special formatting for immediate values and

registers
○ mov eax, 0xca

● SIZE PTR [addr + offset] for value at address
○ add DWORD PTR [ebp-0x8], 0x5

AT&T

● <instruction> <operand(s)>, <destination>
● $ designates immediate value, % designates

registers
○ movl $0xca, %eax

● Offset(addr) for value at address
○ addl $0x5, -0x8(%ebp)

Memory Data Types

Bytes—8 bits. Examples: AL, BL, CL

Word—16 bits. Examples: AX, BX, CX

Double word—32 bits. Examples: EAX, EBX, ECX

Quad word—64 bits. Not found in x86 architectures but instead combines two
registers usually EDX:EAX.

Registers

EAX - Stores function return values

EBX - Base pointer to the data section

ECX - Counter for loop operations

EDX - I/O pointer

EFLAGS - holds single bit flags

ESI - Source pointer for string operations

EDI - Destination pointer for string operations

ESP - Stack pointer

EBP - Stack frame base pointer

EIP - Pointer to next instruction to
execute (“instruction pointer”)

Evolution of Register

Important X86 Instructions

pop - “pops” DWORD off Stack onto a
register. Increments the stack pointer, esp,
by 4 bytes.

eax 0xFFFFFFFF pop eax

push - “Pushes” DWORD onto Stack.
decrements the stack pointer, esp, by 4
bytes

eax 0x00000003 push eax

X86 Instructions continued

mov eax, edx : move contents of edx into eax

mov eax, SIZE PTR [edx] : move contents to
which edx points into eax

Similar to pointer dereference in C/C++
eax = *edx [] -> dereference address between
the brackets

X86 Arithmetic

add eax, 0x5

sub eax, 0x5

mul eax, edx : stores value in edx:eax

div eax, edx : stores dividend in eax, remainder in edx

inc edx: increments edx by 1

dec ecx: decrements edx by 1

push, pop, mov, add - In action
- Push stack frame
- Move current stack

frame
- Push “Hello world” onto

stack for parameter to
call

- Call print function
- Add 4 to stack pointer
- Move 1234h into aex
- Pop old stack frame

pointer return
- Return to next

instruction

X86 Instructions continued

Comparison/Assignment instructions

cmp eax, 0x10: subtracts 0x10 from eax, check if sign flag (SF) is flipped

Calling/Conditional instructions

call 0x8004bc : load address of next instruction onto stack, then function
parameters , then calls function at address 0x8004bc

ret : restores next address of previous function (in EIP) and pops all local
variables off stack

jmp 0x8004bc : unconditional jump to address 0x8004bc; also jl, jle, jge, jg, je

cmp, jmp - In action

- eax will hold sum
- ebx will hold i

- Compare i with 10
- If greater than jump to the loop_end
- Else add i to sum
- Increment i
- Jump back to start of loop

Static Analysis

What is Static Analysis ?

Analyzing the code and structure of a program without actually running the
program.

What are you analyzing ?

paint.exe ? sketchy.exe ?

Integrity - make sure the program you download/run is the one the trusted source
created.

Hash it ! Check it on VirusTotal. Verify.

Tools to use:

shasum

md5

https://www.virustotal.com/

Strings

“Any word or phrase is a string just like this one”

Searching through the strings can be a simple way to get hints about the
functionality of a program.

Strings can gives you:

- URLS
- PASSWORDS
- Standard library calls

*Diagrams from Practical Malware Analysis

Strings: Tools

GNU Strings:

- ASCII
- UNICODE: UTF-16LE, UTF-16BE, UTF-32LE, UTF-32BE

FLOSS:

- More powerful String finder: Obfuscated Strings (purposely garbled strings)
- ASCII , UTF-16LE

Decompilers

Turning 01’s into readable
Assembly Language

Useful for analyzing a program’s
structure and procedures.

Tools used:

- IDA Pro
- Binary Ninja
- Radare2

Dynamic Analysis

What is Dynamic Analysis

The analysis of a program while it is running, to observe its true functionality

This allows you to view the transfer of state within a program

Dynamic Analysis should only be performed after static analysis has been
completed.

Tools

Linux: GDB, Immunity Debugger

Windows: OllyDBG, WinDBG

GDB Walkthrough

Command line interface

● Step through programs
● View stack
● Jump through memory addresses

GDB Cheat Sheet !

https://darkdust.net/files/GDB%20Cheat%20Sheet.pdf

Dynamic Analysis Limitations

Not all functionalities may execute when a program is run

● Command line arguments
● Branches in code

Dynamic Analysis and Malware

Dynamic analysis techniques on malware can put your system and network at risk!

Virtual Machines and Sandboxes allow dynamic analysis on malware

● Cuckoo Sandbox
● Virtualbox/VMWare

Basic Dynamic Analysis on Malware

Process Monitoring

● Top

Virtual Networking

● FakeNet-NG / INetSim

Network Traffic Logging

● WireShark
● NetCat

Buffer Overflow Exploitation

Buffer Overflow

- Putting more data into a buffer than there
is space allocated

- Changes program flow, sends stack
pointer (SP) to another address

Buffer Overflow

- Four possibilities, SP is sent:
● to a virtual address that isn’t mapped

to a physical address
● to a protected address (kernel)
● to an address that has no executable

instruction (NOP)
● to an address that contains an

instruction

int copier (char *str) {

char buffer[100];

strcpy(buffer, str);

printf(“You entered \’%s\ at %p\n”, buffer, buffer);

} // end function copier

buffer[100]

int copier (char *str) {

char buffer[100];

strcpy(buffer, str);

printf(“You entered \’%s\ at %p\n”, buffer, buffer);

} // end function copier

NOP sled:
909090909090909090909090
909090909090909090909090
909090909090909090909090
<shellcode>
padding: aaaaaaaaaaaaaaaaa

aaaaaaaaa

 <return address into NOP sled>

Buffer Overflow

GDB

GDB

GDB

GDB

“Advanced” Topics

Other Attacks

Congrats! You are now a super l33t hacker!

...Of the 1980s. The attack demo’d here is old news

Some other attacks you may want to google on your own time:

● Printf arbitrary read/write
● Heap overflow
● Data leakage

More Stuff To Google

Protections

● Non-executable Stack
● Address Space Layout Randomization (ASLR)
● Stack Canaries

...And Circumventing Those Protections

● NOP-sledding
● Data leakage
● Return-to-libc attack
● ROP chaining

Takeaway

A stack overflow attack is just one (classic) example of exploiting program logic
to do cool stuff.

Hacking is about learning the rules and coming up with a neat way to do
unexpected things within those rules.

The example we showed today is just that: one example. Exploitation of logic flaws
can take countless forms.

Get familiar with how stuff works and you’ll be ready to start hacking!

